13.1: Intro to 3D Vector Curves

To visualize 3D-curves, we start by Step 1: Find surface/path of motion. \leftarrow eliminate parameter Step 2: Plot points.

Example: All pts given by the equations

Now plot points!

next note ^a few pages down

Another 3D Examples $x = t \cos(t)$, $y = t \sin(t)$, $z = t$ *Example:* All pts given by the equations $x = t \cos(t)$, $y = t \sin(t)$, $z = t$

are on the cone $z^2 = x^2 + y^2$. Now plot points!

Intersection issues

For all intersection questions, combine the conditions

(a) *Intersecting a curve and surface*.

Combine conditions

Example:

Find all intersections of

 $x = t$, $y = cos(\pi t)$, $z = sin(\pi t)$ with the surface

$$
x^2 - y^2 - z^2 = 3.
$$

(b) *Intersecting two curves.*

Use two different parameters!!! Combine conditions. We say the objects **collide** if the intersection happens at the same parameter value (i.e. same time).

Example:

Two particles are moving according to $r_1(t) = \langle t, 5t, 9 \rangle$, and $r_2(t) = \langle t-2,5,t^2 \rangle$. Do their paths intersect? Do they collide?

(c) *Intersecting two surfaces*.

Answer will be a 3D curve. To parameterize the curve:

> Let one variable be *t*. Solve for others in terms of *t*.

OR

For circle/ellipse try

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow \frac{x = a \cos(t)}{y = b \sin(t)}
$$

Examples

1. Find *any* parametric equations that describe the curve of intersection of $z = 2x + y^2$ and $z = 2y$

2. Find *any* parametric equations that describe the curve of intersection of

$$
x^2 + y^2 = 1
$$
 and
$$
z = 5 - x
$$

3. Find *any* parametric equations that describe the curves of intersection of $x^2 + y^2 + z^2 = 1$ and $z^2 = x^2 + y^2$

13.1: Intro to 3D Vector Curve

Eliminate the parameter until you get a

A couple side notes:

Forms

Parametric Form $x = t \cos(t)$, $y = t$, $z = t \sin(t)$

Position Vector Form
\n
$$
\mathbf{r}(t) = \langle t \cos(t), t, t \sin(t) \rangle
$$

Three types of intersections

General principle, combine conditions!

(a) *("Easy") A curve and surface*. Combine conditions, solve for *t.*

(b) *("Medium") Two curves*.

Use different parameters! Combine conditions, solve for both parameters.

(c) *("Hard?")* **Two surfaces.**

These can be tricky. Answer will be a *curve*! A typical goal is to try to *parameterize* the curve, here's now…

Combine conditions:

- Pick one variable as t, solve for others.
- And/or use circular motion.

Examples: *(HW 13.1 / 7, 8)* Find the intersection of

$$
x = t, y = \cos(\pi t), z = \sin(\pi t)
$$

$$
x^2 - y^2 - z^2 = 3.
$$

Example: *(HW 13.1/12, 13) Sp'17 Exam Problem*

Given:

$$
r_1(t) = \langle 2t, 3t^2, 2t^3 \rangle
$$

\n
$$
r_2(t) = \langle 2 - 2t, 3 + 3t, 2 - 6t \rangle
$$

Find the (x,y,z) point(s) at which the **paths** of the two particles described cross.

Example: *(HW 13.1/9-11)*

Find *any* parametric equations that describe the curve of intersection of

$$
x^2 + y^2 = 1
$$
 and
$$
z = 5 - x
$$

+ Question Details $9.$

Find a vector function, $r(t)$, that represents the curve of intersection of the two surfaces.

```
The cylinder x^2 + y^2 = 4 and the surface z = xyr(t) =
```
+ Question Details $10.$

Find a vector function, $r(t)$, that represents the curve of intersection of the two surfaces.

11. + Question Details

Find a vector function, $r(t)$, that represents the curve of intersection of the two surfaces.

```
The paraboloid z = 2x^2 + y^2 and the parabolic cylinder y = 4x^2
```
 $\mathbf{r}(t) =$

Do calculus component-wise!

1st Derivative vector: $\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$ *2nd Derivative vector*: $\vec{r}''(t) = \langle x''(t), y''(t), z''(t) \rangle$

Anti-derivative vector:

$$
\int \vec{r}(t)dt = \left\langle \int x(t)dt, \int y(t)dt, \int z(t)dt \right\rangle
$$

2. \div Question Details

Consider the given vector equation.

 $r(t) = e^{18t} i + e^{9t} j$ (a) Find $\mathbf{r}'(t)$.

(b) Sketch the plane curve together with position vector $r(t)$ and the tangent vector $r'(t)$ for the given value of $t = 0$.

A couple important follow-up facts

- \bullet $\overrightarrow{T}(t) = \frac{1}{\overrightarrow{R}(t)}$ $|\vec{r}(t)|$ $\vec{r}'(t)$ anit tangent vector (HW 13.2/ 5, 6)
- To find the tangent **line** to $\vec{r}(t)$ at $t = t_0$ (HW 13.2 / 7)
	- Step 1: Compute location

$$
\vec{r}(t_0) = \langle x(t_0), y(t_0), z(t_0) \rangle = \langle x_0, y_0, z_0 \rangle.
$$

Step 2: Compute a tangent vector

$$
\overrightarrow{r}'(t_0) = \langle x'(t_0), y'(t_0), z'(t_0) \rangle = \langle a, b, c \rangle.
$$

• Step 3: $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$

Example: (*HW 13.2 / 7, 8, 9*) *W'15 Exam 1 - Loveless*

Consider the curve given by:

 $x = 2t, y = 5, z = t^2 - 10t$

(a) There is one point on the curve at which the tangent line is parallel to the xy-plane.

Find the tangent line at this point.

(b) Find the angle of intersection of the original curve this other curve $x = 7 + u$, $y = 2u + 11$, $z = u² + u - 22$

Derivatives Quick Review

A basic example: Write down the derivative of

$$
g(x) = x^3 \cos(2x) + \sqrt{1 + e^{3x}}
$$

Calculus Fact Sheet

Essential Derivative Rules

From my Calculus 1 Fact Sheet: [math.washington.edu/~aloveles/Math126Materials/CalculusFactSheet2.pdf](https://sites.math.washington.edu/~aloveles/Math126Materials/CalculusFactSheet2.pdf)

Antiderivatives Quick Review

A basic example: Find $f(t)$, if $f'(t) = 6\sqrt{t} + \sin(t) + 9te^{t^2}$ with $f(0) = 7$.

From my Calculus 1 Fact Sheet: [math.washington.edu/~aloveles/Math126Materials/CalculusFactSheet2.pdf](https://sites.math.washington.edu/~aloveles/Math126Materials/CalculusFactSheet2.pdf)

Essential Integral Rules

$$
\frac{\int x^n dx = \frac{1}{n+1} x^{n+1} + C \qquad \qquad \int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + C}{\int e^{ax} dx = \frac{1}{a} e^{ax} + C \qquad \qquad \int b^x dx = \frac{1}{\ln(b)} b^x + C}
$$
\n
$$
\frac{\int \cos(ax) dx = \frac{1}{a} \sin(ax) + C \qquad \qquad \int \sin(ax) dx = -\frac{1}{a} \cos(ax) + C}{\int \sec^2(x) dx = \tan(x) + C \qquad \qquad \int \csc^2(x) dx = -\cot(x) + C}
$$
\n
$$
\frac{\int \sec(x) \tan(x) dx = \sec(x) + C \qquad \qquad \int \csc(x) \cot(x) dx = -\csc(x) + C}{\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C \qquad \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + C}
$$
\n
$$
\frac{\int \tan(x) dx = \ln |\sec(x)| + C \qquad \qquad \int \cot(x) dx = \ln |\sin(x)| + C}{\int \sec(x) dx = \ln |\sec(x) + \tan(x)| + C \qquad \int \csc(x) dx = \ln |\csc(x) - \cot(x)| + C}
$$
\n
$$
\int \sec^3(x) dx = \frac{1}{2} \sec(x) \tan(x) + \frac{1}{2} \ln |\sec(x) + \tan(x)| + C
$$

For Ch. 13, you MUST remember:

- how to find +C.
- how to simplification and **u-substitution**.
- How to use **integration by parts**.

There are more methods, but you won't need to remember those until chapter 15.

Try again component-wise:

(HW 13.2 / 10) Find the antiderivative of $\vec{r}'(t) = \langle e^{3t}, t^4, t \sin(t) \rangle$ with $\vec{r}(0) = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$.